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Abstract. In the framework of functional integration the non-leading terms of the leading eikonal behavior
of the Planck energy scattering amplitude are calculated by the straight-line path approximation. We show
that the allowance for the first-order correction terms leads to the appearance of the retardation effect.
The singular character of the correction terms at short distances is also noted, and they may ultimately
lead to the appearance of non-eikonal contributions to the scattering amplitudes.

1 Introduction

The asymptotical behavior of the scattering amplitude at
high energy is one of the central problems of elementary
particle physics. The standard method of quantum field
theory is expected to entail that the calculations based on
perturbation theory are suitable when the energy of indi-
vidual particles is not rather high and the effective cou-
pling constant is not large. When the energy is increased
the effective coupling constant also increases, so that the
corrections calculated by perturbation theory play a cru-
cial role. Gravitational scattering occurs at Planck energy
s1/2 = 2E ≥ MPL, where s is the square of the center
of mass energy, MPL is the Planck mass, and small an-
gles are characterized by the effective coupling constant
αG = Gs/� ≥ 1 which makes any simple perturbative
expansion unwarranted. Comparison of the results of the
different approaches [1–3,7,8] proposed for this problem
has shown that they all coincide in the leading order ap-
proximation, which has a semiclassical effective metric in-
terpretation, while most of them fail in providing the non-
leading terms under which new classical and quantum ef-
fects are hiding [2,3].

The aim of the present paper is to continue the de-
termination of the non-leading terms to the Planck en-
ergy scattering by a functional approach proposed for con-
structing a scattering amplitude in our previous works [9,
10]. Using the straight-line path approximation we have
shown that in the limit of asymptotically high s�M2

PL �
t, at fixed momentum transfers t the lowest order eikonal
expansion of the exact two-particle Green function on the
mass shell gives the leading behavior of the Planck en-
ergy scattering amplitude, which agrees with the results
found by all others [1–3,7,8]. The main advantage of the
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proposed approach is the possibility of performing calcu-
lations in a compact form and obtaining the sum of the
considered diagrams immediately in a closed form.

The outline of this paper is as follows. In the second
section using the example of the scalar model Lint = gϕ2φ,
which allows one to make the exposition having most clar-
ity and being most descriptive, and also less tedious calcu-
lations being involved, by means of the functional integra-
tion, we briefly demonstrate the conclusion of the leading
behavior [9–14,28,16,17] and explain the important steps
in calculating the non-leading terms to the high-energy
scattering amplitude [28]. This section can be divided into
three parts. In the first one the quantum Green function
of two particles is obtained in the form of the functional
integral. In the second part by a transition to the mass
shell of the external two-particle Green function we ob-
tain a closed representation for the two-particle scattering
amplitude which is also expressed in the form of functional
integrals. In the last of this section the straight-line path
approximation and its generalization are discussed for cal-
culating the non-leading terms to high-energy scattering
amplitudes. Based on the exact expression of the single-
particle Green function in the gravitational field gµν(x)
obtained in [9], the results discussed in the second sec-
tion will be generalized in the third section to the case
of scalar “nucleons” of the field ϕ(x) interacting with a
gravitational field. Finally, in the fourth section we draw
our conclusions.

2 Corrections to the eikonal equations
in the scalar model

In the construction of a scattering amplitude we use a
reduction formula which relates an element of the S matrix
to the vacuum expectation of the chronological product
of the field operators. For the two-particle amplitude, this
formula has the form
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i(2π)4δ4(p1 + p2 − q1 − q2)T (p1, p2; q1, q2)

= i4
∫ 2∏

k=1

dxkdyk
−→
K

m

x1

−→
K

m

x2

× 〈0|T (ϕ(x1)ϕ(x2)ϕ(y1)ϕ(y2))|0〉←−Km

y1

←−
K

m

y2
, (2.1)

where p1, p2 and q1, q2 are the moments of the particles
of the field ϕ(x) before and after scattering, respectively.

Ignoring the vacuum polarization effects the two-
nucleon Green function on the right-hand side of (2.1)
can be represented in the form

G(x1, x2; y1, y2) = 〈0|T (ϕ(x1)ϕ(x2)ϕ(y1)ϕ(y2))|0〉
= exp

{
i
2

∫
D

δ2

δφ2

}[
G(x1, y1|φ)G(x2, y2|φ)

+ G(x1, y2|φ)G(x2, y1|φ)
]∣∣∣
φ=0

, (2.2)

where

exp
{

i
2

∫
D

δ2

δφ2

}

= exp
{

i
2

∫
d4z1d4z2D(z1 − z2)

δ2

δφ(z1)δφ(z2)

}
, (2.3)

and G(x, y|φ) is the Green function of the nucleon ϕ(x)
in a given external field φ(x).The nucleon Green function
G(x, y|φ) satisfies the equation

[✷ + m2 − gφ(x)]G(x, y|φ) = δ4(x− y), (2.4)

whose formal solution can be written in the form of a
Feynman path integral:

G(x, y|φ) = i
∫ ∞

0
e−im2τdτ

∫
[δ4ν]τ0 (2.5)

× exp
{

ig
∫

dzJ(z)φ(z)
}
δ4
(
x− y + 2

∫ τ

0
ν(η)dη

)
,

where J(z) is the classical current of the nucleon1:

J(z) =
∫ τ

0
dηδ4

(
z − x + 2

∫ τ

0
ν(ξ)dξ

)
, (2.6)

[δ4νi]τ
2

τ1 is a volume element of the functional space of
the four-dimensional function ν(η) defined on the interval
τ1 ≤ η ≤ τ2,

[δ4νi]τ
2

τ1 =
δ4νi exp[−i

∫ τ2

τ1
ν2
µ(η)

∏
η d4η∫

δ4νi exp[−i
∫ τ2

τ1
ν2
µ(η)

∏
η d4η

.

Substituting (2.5) into (2.2) and performing the vari-
ational differentiation with respect to φ, we find that the
Fourier transform of the two-nucleon Green function

G(p1, p2; q1, q2)

=
∫ 2∏

i=1

(d4xid4yiei(pixi−qiyi))G(x1, x2; y1, y2) (2.7)

1 In the scalar model J(z) describes the spatial density of
nucleon moving on a classical trajectory. However, in this case
we call J(z) a current

is given by the following expression:

G(p1, p2|q1, q2)

= i2
2∏

i=1

(∫ ∞

0
dτieiτi(p2

i −m2)
∫

[δ4νi]τi
0

∫
dxieixi(pi−qi)

)

× exp
[
− ig2

2

∫
D(J1 + J2)2

]
+ (p1 ↔ p2), (2.8)

where we have introduced the abbreviated notation∫
JiDJk =

∫ ∫
dz1dz2Ji(z1)D(z1 − z2)Jk(z2). (2.9)

Expanding the expression (2.8) with respect to the
coupling constant g2 and taking the functional integrals
with respect to νi, which reduce to simple Gaussian quad-
ratures if a Fourier transformation is made, we obtain the
well-known series of perturbation theory for G(p1, p2|q1,
q2).

The elastic-scattering amplitude is related to the two-
nucleon Green function by

i(2π)4δ4(p1 + p2 − q1 − q2)T (p1, p2|q1, q2)scalar

= lim
p2

i ,q
2
i →m2


 ∏

i=1,2

(p2
i −m2)(qi −m2)


G(p1, p2|q1, q2)

+(p1 ↔ p2). (2.10)

Substituting (2.5) into (2.2) and making a number of sub-
stitutions of the functional variables [9], we obtain a closed
expression for the two-nucleon scattering amplitude in the
form of functional integrals:

T (p1, p2; q1, q2)scalar =
g2

(2π)4

∫
d4xei(p1−q1)xD(x)

×

 2∏

i=1

∫
[δ4νi]∞−∞ exp


i

g2

2

∑
i=1,2

∫
(JiDJi − iδim2)






× exp
∫ 1

0
dλ exp

(
ig2λ

∫
J1DJ2

)
+ (p1 ↔ p2), (2.11)

where the quantity Ji(z, pi, qi|νi) is a conserving transition
current given by

Ji(z, pi, qi|νi)

=
∫ ∞

−∞
dξδ

(
z − xi − ai(ξ) + 2

∫ ξ

0
νi(η)dη

)
, (2.12)

a1,2(ξ) = p1,2θ(ξ) + q1,2θ(−ξ). (2.13)

The scattering amplitude (2.11) is interpreted as the
residue of the two-particle Green function (2.8) at the
poles corresponding to the nucleon ends. A factor of the
type exp

(
−(iκ2/2)

∑
i=1,2

∫
JiDJi

)
of (2.11) takes into

account the radiative corrections to the scattered nucle-
ons, while exp

(
iκ2λeikx

∫
J1DJ2

)
describes virtual-meson

exchange among them. The integral with respect to dλ
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ensures the subtraction of the contribution of the freely
propagating particles from the matrix element. The func-
tional variables ν1(η) and ν2(η) formally introduced for
obtaining the solution of the Green function describe the
deviation of a particle trajectory from the straight-line
paths. The functional with respect to [δ4νi] (i = 1, 2) cor-
responds to the summation over all possible trajectories
of the colliding particles. From the consideration of the in-
tegrals over ξ1 and ξ2 for exp

(
−(iκ2/2)

∑
i=1,2

∫
JiDJi

)
it is seen that the radiative correction result in divergent
expressions of the type δim

2 × (A → ∞). To regularize
them, it is necessary to renormalize the mass, that is, to
separate from exp

(
−(iκ2/2)

∑
i=1,2

∫
JiDJi

)
the terms

δim
2×(A→∞) (i = 1, 2), after which we go over in (2.11)

to the observed mass mi
2
R = mi

2
0 + δim

2. These problems
have been discussed in detail in previous works [9,10,12,
18]; therefore we shall hereafter drop the radiation cor-
rections terms exp

(
i(g2/2)

∑
i=1,2

∫
[JiDJi − iδim2]

)
as

these contributions in our model can be factorized as a
factor R(t) that depends only on the square of the mo-
ment transfer. A similar factorization of the contributions
of radiative corrections in quantum electrodynamics has
also been obtained [19].

Ignoring the radiation corrections, the elastic-scatter-
ing amplitude of two scalar nucleons (2.11) can be repre-
sented in the following form:

T (p1, p2|q1, q2)scalar (2.14)

=
ig2

(2π)4

∫
d4xe−ix(p1−q1)D(x)

∫ λ

0
dλSλ + (p1 ↔ p2),

where

Sλ =
∫ 2∏

i=1

[δ4νi]∞−∞ exp{ig2λΠ[ν]};

Π[ν] =
∫

J1DJ2, (2.15)

and the quantity Ji(k, pi, qi|νi) is a conserving transition
given by

Ji(k, pi, qi|νi)

=
∫ ∞

−∞
dξ exp

(
2ik

[
ai(ξ) +

∫ ξ

0
νi(η)dη

])
. (2.16)

Note that the expression (2.12) defines the scalar density
of a classical point particle moving along the curvilinear
path xi(s), which depends on the proper time s = 2mξ
and satisfies the equation

mdxi(s)/ds = piθ(ξ) + qiθ(−ξ) + νi(ξ) (2.17)

subject to the condition xi(0) = xi, i = 1, 2. For this
reason, the representation (2.11) of the scattering ampli-
tude can be regarded as a functional sum over all possible
nucleon paths in the scattering process.

However, the functional integrals (2.14) cannot be inte-
grated exactly and an approximate method must be devel-
oped. The simplest possibility is to eliminate νi(ξ) from
the argument of the Ji(k, pi, qi|νi) function, i.e., we set
νi(ξ) = 0 in (2.16) for the transition current, and obtain

Ji(k, pi, qi|νi) =
[

1
2pik + iε

− 1
2qik − iε

]
, (2.18)

which corresponds to the classical current of a nucleon
moving with momentum p for ξ > 0 and momentum q for
ξ < 0.

Note however that the approximation ν = 0 is cer-
tainly false for proper time s of the particle near rezo,
when the classical trajectory of the particle changes di-
rection. In the language of Feynman diagrams, this cor-
responds to neglecting the quadratic dependence on ki in
the nucleon propagators, i.e.,

m2 −
(
p−

n∑
i=1

ki

)2



−1

→
[
2p

n∑
i=1

ki

]−1

, (2.19)

which can lead to the appearance of divergences of inte-
grals with respect to d4k at the upper limit. As is well
known, this approximation, (2.19), can be used to study
the infrared asymptotic behavior in quantum electrody-
namics [11,20,21]. However, it has not been proved in the
region of high energies [11–13].

Therefore, we shall use an approximate method of cal-
culating integrals with respect to νi(ξ) which enables one
to retain the quadratic dependence of the nucleon propa-
gators on the momenta ki. This method is based on the
following expansion formula [11,14,22]:

exp (g2Π[ν]) =
∫

[δ4ν] exp(g2Π[ν]) (2.20)

= exp(g2Π[ν])

[
1 +

∞∑
n=2

(g2)n

n!
(Π −Π)n

]
,

where Π[ν] =
∫

[δ4ν]|Π[ν].
Applying the modified expansion formula (2.20) ex-

posed in detail in [28] in our case, we consider the leading
term (n = 0) and the following correction term (n = 1).
When n = 0 the leading term has the form

S
(n=0)scalar
λ = exp (iλg2Π[ν]) =

∫
[δ4ν] exp(iλg2Π[ν])

≈ exp
(

iλg2
∫

[δ4ν]Π[ν]
)
, (2.21)

where

Π[ν]
∣∣∣
ν=0

=
1

(2π)4

∫
d4kD(k) exp(−ikx)

×
∫ ∞

−∞
dξdτ exp

(
2ik

[
ξa1(ξ)√

s
− τa2(τ)√

s

])

× exp
[
i
k2
√
s
(|ξ|+ |τ |)

]
. (2.22)
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In (2.22), we have made the change of variables ξ, τ →
ξ/(s1/2), τ/(τ1/2). When n = 1 the correction term has
the following form:

S
(n=1)scalar
λ = exp(iλg2Π[ν]) (2.23)

× exp


1 +

iλ2g4

4


∫

dη
∑
i=1,2

(
δΠ[ν]
δνi(η)

)2




∣∣∣∣∣∣
ν=0

.

Using (2.22) we have

iλ2g4

4

∫
dη


( δΠ[ν]

δν1(η)

)2

+

(
δΠ[ν]
δν2(η)

)2



=
iλ2g4

(2π)8

∫
d4k1d4k2e−ix(k1+k2)D(k1)D(k2)(k1k2)

×
∫ ∞

−∞
dξ1dτ1dξ2dτ2 exp

{
2ik1

[
ξ1
a1(ξ1)√

s
− τ1

a2(τ1)√
s

]

×
[
i
k2
1√
s
(|ξ1|+ |τ1|)

]}

× exp
{

2ik2

[
ξ2
a1(ξ2)√

s
− τ1

a2(τ2)√
s

] [
i
k2
2√
s
(|ξ2|+ |τ2|)

]}

× 1√
s
[Φ(ξ1, ξ2) + Φ(τ1, τ2)], (2.24)

where

Φ(ξ1, ξ2) = ϑ(ξ1, ξ2)[|ξ1|ϑ(|ξ2| − |ξ1|) + |ξ2|ϑ(|ξ1| − |ξ2|)],
Φ(τ1, τ2) = ϑ(τ1, τ2)[|τ1|ϑ(|τ2| − |τ1|) + |τ2|ϑ(|τ1| − |τ2|)].

(2.25)

In this approximation the nucleon propagator func-
tions in (2.21)–(2.25) do not contain terms of type kikj ,
where ki and kj belong to different mesons interacting
with the nucleons. This means that in the nucleon prop-
agators we can neglect the terms of the form

∑
i �=j kikj

compared with 2p
∑

i ki, i.e., we can make the substitu-
tion
m2 −

(
p−

n∑
i=1

ki

)2



−1

→
[
2p

n∑
i=1

ki −
n∑
i=1

k2
i

]−1

. (2.26)

This approximation, kikj = 0, which is called the straight-
line path approximation, corresponds to the approximate
calculation of the Feynman path integrals [9–14,28,16,17]
in (2.11) and (2.14) in accordance with the rule (2.26).
The formulation of the straight-line path approximation
made it possible to put forward a clear physical concept, in
accordance with which high-energy particles move along
Feynman paths that are most nearly rectilinear.

The validity of the given approximation of (2.26) in
the region of high energies s for given momentum trans-
fers t can be studied within the framework of perturba-
tion theory. In particular, one can show that neglecting
the terms kikj = 0 the denominators of the nucleon prop-
agator functions in the case of ordinary ladder diagrams

obtained by iteration of the single-meson exchange dia-
gram does not affect the asymptotic behavior at high en-
ergies, which, when mesons are exchanged, has the form
lns/sn−1. The validity of this approximation, (2.26), has
also been proved for the larger class of diagrams with in-
teracting meson lines [11]. In addition, it should be noted
that the eikonal approximation in the potential scattering
also reduces to a modification of the propagator (which
is nonrelativistic in this case), a modification determined
[25] by (2.19) and (2.26).

We shall seek the asymptotic behavior of the functional
integral Sλ at large s = (p1 + p2)2 and fixed momentum
transfers t = (p1− q1)2. For this, we go over to the center-
of-mass system and take the z axis along the moment of
the incident particles. Then

p1,2 =

{√
s

2
, 0, 0,±

√
s− 4m2

2

}
;

q1,2 =

{√
s

2
,±�⊥

√
1 +

t

s− 4m2

±
√
s− 4m2

2

(
1 +

2t
s− 4m2

)}
, (2.27)

�2
⊥ = −t.

Substituting (2.27) into (2.14), we obtain

a1,2(ξ) =
1√
s
[p1,2θ(ξ) + q1,2θ(−ξ)]

=
1
2
[θ(ξ) + θ(−ξ)]±

(
∆⊥√
s

√
1 +

t

s− 4m2

)
θ(−ξ)

±
√
s− 4m2
√
s

(
1 +

t

s− 4m2

)
. (2.28)

In the limit s → ∞ for fixed t and keeping the terms
to order O (1/s), we found

a1(ξ)√
s
≈ 1

2
n+ +

�⊥√
s
ϑ(−ξ) + O

(
1
s

)
,

a2(ξ)√
s
≈ 1

2
n− − �⊥√

s
ϑ(−ξ) + O

(
1
s

)
,

n± = {1, 0, 0,±1}. (2.29)

We now find the asymptotic behavior of the expres-
sions (2.22) and (2.24) as s→∞ and fixed t. Using (2.29),
we obtain an asymptotic expression for (2.22) and (2.24).
Namely

Π[ν] =
1

(2π)6s

∫
d4ke−ikxD(k)

∫ ∞

−∞
dξdτei(k−ξ−k+τ)

×
{

1− 2i
k⊥�⊥√

s
[ξϑ(−ξ) + τϑ(−τ)] +

ik2
√
s(|ξ|+ |τ |)

}

≈ − 1
8π2s

∫
d2k⊥

k2
⊥ + µ2 eik⊥x⊥

+
i�⊥

s
√
s8π2 [x+ϑ(−x+)− x−ϑ(x−)]
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×
∫

d2k⊥eik⊥x⊥ k⊥
k2

⊥ + µ2

+
i

16π2s
√
s
(|x+|+ |x−|)

∫
d2k⊥

k2
⊥ + µ2 eik⊥x⊥

= − 1
4πs

K0(µ|x⊥|)

− µ

4πs
√
s

�⊥x⊥
|x⊥| [x+ϑ(−x+)− x−ϑ(x−)]K1(µ|x⊥|)

− iµ2

8πs
√
s
(|x+|+ |x−|)K0(µ|x⊥|), (2.30)

where x± = x0 ± xz, the light cone coordinates, k(i)
± =

k
(i)
0 ± k

(i)
z , i = 1, 2 and µ is the mass of the changed par-

ticle, which must be introduced as an infrared regulator.
The final expression is

iλ2g4

4

∫
dη


( δΠ[ν]

δν1(η)

)2

+

(
δΠ[ν]
δν2(η)

)2



≈ − iλ2g4

(2π)8s2
√
s

∫
d4k1d4k2D(k1)D(k2)

× exp[−ix(k1 + k2)](k1k2)

×
∫ ∞

−∞
dξ1dτ1ei(k(1)

− ξ1−k
(1)
+ τ1)

∫ ∞

−∞
dξ2dτ2ei(k(2)

− ξ2−k
(2)
+ τ2)

× [Φ(ξ1, ξ2) + Φ(τ1, τ2)]

= − iλ2g4µ2

32π2s2
√
s
(|x+|+ |x−|)K2

1 (µ|x⊥|); (2.31)

here we have assumed |x⊥| �= 0, which ensures that all
the integrals converge. The functions K0(µ|x⊥|) and K1
(µ|x⊥|) are MacDonald functions of the zeroth and first
orders and are determined by the expressions

K0(µ|x⊥|) =
1
2π

∫
d2k⊥

exp(ik⊥x⊥)
k2

⊥ + µ2 ,

K1(µ|x⊥|) = −∂K0(µ|x⊥|)
∂(µ|x⊥|) . (2.32)

We now substitute (2.30) and (2.31) into (2.24) and
obtain for the correction term S

(n=1)
λ the desired expres-

sion:

S
(n=1)
λ ≈ exp

[
− ig2λ

4πs
K0(µ|x⊥|)

]

×
{

1− ig2λµ

4πs
√
s

�⊥x⊥
|x⊥|

× [x+ϑ(−x+)− x−ϑ(x−)]K1(µ|x⊥|)
+

g2λµ2

8πs
√
s
(|x+|+ |x−|)K0(µ|x⊥|)

− ig4λ2µ2

32π2s2
√
s
(|x+|+ |x−|)K2

1 (µ|x⊥|)
}
. (2.33)

In this expression, (2.33), the factor in front of the
braces corresponds to the leading eikonal behavior of the

scattering amplitude, while the terms in the braces deter-
mine the correction of relative magnitude 1/(s1/2).

As is well known from the investigation of the scatter-
ing amplitude in the Feynman diagrammatic technique,
the high-energy asymptotic behavior can contain only log-
arithms and integral powers of s. A similar effect is ob-
served here, since integration of the expression (2.33) for
Sλ in accordance with (2.14) leads to the vanishing of the
coefficients for half-integral powers of s. Nevertheless, al-
lowance for the terms that contain the half-integral powers
of s is needed for the calculations of the next corrections
in the scattering amplitude. It is interesting to note the
appearance in the correction terms of a dependence on
x0 and xz (x± = x0 ± xz), i.e., the appearance of the so-
called retardation effects, which are absent in the principal
asymptotic term.

Making similar calculations, we can show that all the
following terms of the expansion (2.20) decrease suf-
ficiently rapidly compared with those we have written
down. However, it must be emphasized that this by no
means proves the validity of the eikonal representation for
the scattering amplitude in the given framework. The co-
efficient functions in the asymptotic expansion, which are
expressed in terms of MacDonald functions, are singular
at short distances and this singularity becomes stronger
in an increasing rate with the decrease of the correspond-
ing terms at large s. Therefore, integration of Sλ in ac-
cordance with (2.14) in the determination of the scatter-
ing amplitude may lead to the appearance of terms that
violate the eikonal series in the higher order in g2. The
possible appearance of such terms in individual orders
of perturbation theory in models of type ϕ3 was pointed
out in [23,24,11]. Investigating the structure of the non-
eikonal contributions to the two-nucleon scattering am-
plitude shows that the sum of all ladder diagrams of the
eighth order in the scalar model contains terms that are
absent in the orthodox eikonal equation and vanish in the
limit (µ/m) → 0, where µ and m are meson and nucleon
masses. These terms correspond to the contributions to
the effective quasipotential resulting from the exchange of
nucleon–antinucleon pairs [28].

To conclude this section we consider the asymptotic
behavior of the elastic-scattering amplitude of two scalar
nucleons (2.14) in the ultra-high-energy limit s → ∞,
t/s → 0. In this case the phase function of the leading
eikonal behavior χ(b, s) = −g2/(4πs)K0(µ|x⊥|) following
from (2.33) does not depend on x+ and x−. Performing
the integration dx+, dx− and dλ for the scattering ampli-
tude in the center-of-mass (c.m.s) system2 we obtain the
following eikonal form:

T (s, t) = −2is
∫

d2x⊥ei∆⊥x⊥(e−iχ(x⊥s) − 1), (2.34)

where x⊥ is a two-dimensional vector perpendicular to the
nucleon-collision direction (the impact parameter), and

2 The amplitude T (s, t) is normalized in the c.m.s. by the
relation

dσ
dΩ

=
|T (s, t)|2
64π2s

, σt =
1

2p
√

s
ImT (s, t = 0)



648 Nguyen Suan Han, Nguyen Nhu Xuan: Planck scattering beyond the eikonal approximation

the eikonal phase function χ(x⊥s) by scalar meson ex-
change decreases with energy:

χ(x⊥, s) =
g2

4πs
K0(µ|x⊥|). (2.35)

For a similar calculation it has been shown that the ex-
change term (p1 ↔ p2) is one order (1/s) smaller and so
can be dropped in (2.33). The amplitude is in an eikonal
form. The case of interaction of nucleons with vector
mesons, and the graviton, can be treated in a similar man-
ner.

3 Corrections to the eikonal equations
in quantum gravity

In the framework of standard field theory for the high-
energy scattering the different methods have been devel-
oped to investigate the asymptotic behavior of individual
Feynman diagrams and their subsequent summation. The
calculations of eikonal diagrams in the case of gravity run
in a similar way as the analogous calculations in QED.
The eikonal captures the leading behavior of each order
in perturbation theory, but the sum of leading terms is
subdominant to the terms neglected by this approxima-
tion. The reliability of the eikonal amplitude for gravity
is uncertain. One approach which has probed the first of
these features with some success is that based on reggeized
string exchange amplitudes with subsequent reduction to
the gravitational eikonal limit including the leading order
corrections [2,26,27]. In this paper we follow a somewhat
different approach based on a representation of the so-
lutions of the exact equation of the theory in the form
of a functional integral. By this approach we obtain the
closed relativistically invariant crossing symmetry expres-
sions for the two-nucleon elastic-scattering amplitudes [9],
which may be regarded as sum over all trajectories of the
colliding nucleon and are helpful to investigate the asymp-
totical behavior of scattering amplitudes in different kine-
matics at low to high energies.

We consider the scalar nucleons ϕ(x) interacting with
the gravitational field gµν(x), where the interaction La-
grangian is of the form

L(x) =
√−g

2
[gµν(x)∂µϕ(x)∂νϕ(x)−m2ϕ2(x)]

+Lgrav.(x), (3.1)

where g = detgµν(x) = (−g)1/2gµν(x). For the single-
particle Green function in the gravitational field gµν(x) in
the harmonic coordinates defined by the condition ∂µg̃

µν

(x) = 0, we have the following equation:

[g̃µν(x)i∂µi∂ν −
√−gm2]G(x, y|gµν) = δ4(x− y), (3.2)

whose solution can be written in the form of a functional
integral [9]:

G(x, y|gµν) = i
∫ ∞

0
dτe−im2τ (3.3)

× Cν

∫
δ4ν exp

(
−i

∫ τ

0
dξ[g̃µν(x, ξ)]−1νµ(ξ)νν(ξ)

− im2
∫ τ

0
[
√
−g(xξ)− 1]dξ

)
δ4
(
x− y − 2

∫ τ

0
ν(η)dη

)
.

Equation (3.3) is the exactly closed expression for the
scalar-particle Green function in an arbitrary external
gravitational field gµν(x) in the form of a functional inte-
gral [9].

In the following we consider the gravitational field in
the linear approximation, i.e., we put gµν = ηµν + κhµν ,
where ηµν is the Minkowski metric tensor with diagonal
(1,−1,−1,−1).

Rewrite (3.3) in the variables hµν(x) and after drop-
ping the term with an exponent power higher than the first
hµν(x)3, we have a Green function for the single-particle
Klein–Gordon equation in a linearized gravitational field:

G(x, y|hµν)
= i

∫ ∞

0
dτe−im2τ

∫
[δ4ν]τ0 exp

(
iκ
∫

Jµν(z)hµν(z)dz
)

× δ4
(
x− y − 2

∫ τ

0
ν(η)dη

)
, (3.4)

where Jµν(z) is the current of the nucleon defined by

Jµν(z) =
∫ τi

0
dξ(νµ(ξ)νν(ξ))

× δ

(
z − xi + 2piξ + 2

∫ ξ

0
νi(η)dη

)
. (3.5)

Substituting (3.4) into (2.2) and making analogous cal-
culations as has been done in [9], for the scattering ampli-
tudes we obtain the following expression:

T (p1, p2; q1, q2)tensor

= κ2
∫

d4xei(p1−q1)x∆(x; p1, p2; q1, q2)

×
∫ 1

0
dλSλ + (p1 ↔ p2), (3.6)

where

Stensor
λ =

∫ 2∏
i=1

[δ4νi]∞−∞ exp{iκ2λΠ[ν]},

3 The Lagrangian (3.1) in the linear approximation to hµν(x)
has the form L(x) = L0,ϕ(x) + L0,grav.(x) + Lint(x), where

L0(x) =
1
2
[∂µϕ(x)∂µϕ(x)− m2ϕ2(x)],

Lint(x) = −κ

2
hµν(x)Tµν(x),

Tµν(x) = ∂µϕ(x)∂νϕ(x)− 1
2
ηµν [∂σϕ(x)∂σϕ(x)− m2ϕ2(x)],

where Tµν(x) is the energy momentum tensor of the scalar
field. The coupling constant κ is related to Newton’s constant
of gravitation G by κ2 = 16πG
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Π[ν] =
∫

J1DJ2 (3.7)

∆(x; p1, p2; q1, q2) =
∫

d4kDµνρσ(k)eikx

× [k + p1 + q1]µ[k + p1 + q1]ν
× [−k + p2 + q2]ρ[−k + p2 + q2]σ. (3.8)

The quantity Jµνi (k; pi, qi|νi) in (3.7) is a conserving tran-
sition current given by

Jµνi (k; pi, qi|ν) = 4
∫ ∞

−∞
dξ[ai(ξ) + ν(ξ)]µ[ai(ξ) + ν(ξ)]ν

× exp

(
2ik

[
ξiai(ξ) +

∫ ξ

0
νi(η)dη

])
, (3.9)

and Dαβγδ(x) is the causal Green function

Dαβγδ(x) = ωαβ,γδ
i

(2π)4

∫
eikx

k2 − µ2 + iε
d4k,

ωαβ,γδ = (ηαγηβδ + ηαδηβγ − ηαβηγδ).

The leading term (n = 0) and the following correc-
tion term (n = 1) in the case of quantum gravity can be
constructed in a way similar as in the scalar model,

S
(n=0)tensor
λ =

∫
[δ4ν] exp(iλg2Π[ν])

≈ exp
(

iλκ2
∫

[δ4ν]Π[ν]
)
, (3.10)

where

Π[ν]
∣∣∣
ν=0

=
1

(2π)4

∫
d4ke−ikx

∫ ∞

−∞
dξdτaµ1 (ξ)aν1(ξ)

× Dµνσ (k)aσ2 (τ)a 2(τ) exp
(

2ik
[
ξa1(ξ)√

s
− τa2(τ)√

s

])

× exp
[
i
k2
√
s
(|ξ|+ |τ |)

]
, (3.11)

and

S
(n=1)tensor
λ = exp(iλκ2Π[ν]) (3.12)

× exp


1 +

iλ2κ4

4


∫

dη
∑
i=1,2

(
δΠ[ν]
δνi(η)

)2




∣∣∣∣∣∣
ν=0

.

Using (2.27) and (2.29), we obtain an asymptotic expres-
sion for (3.11) and (3.12), namely,

Π[ν] =
1

(2π)6s

∫
d4ke−ikx

×
∫ ∞

−∞
dξdτei(k−ξ−k+τ)aµ1 (ξ)aν1(ξ)Dµνσ (k)aσ2 (τ)a 2(τ)

×
{

1− 2i
k⊥�⊥√

s
[ξϑ(−ξ) + τϑ(−τ)] +

ik2
√
s(|ξ|+ |τ |)

}

≈ s

4π2

∫
d2k⊥

k2
⊥ + µ2 exp(ik⊥x⊥)

+
is�⊥
4π2
√
s
[x+ϑ(−x+)− x−ϑ(x−)]

×
∫

d2k⊥ exp(ik⊥x⊥)
k⊥

k2
⊥ + µ2

− is
8π2
√
s
(|x+|+ |x−|)

∫
d2k⊥

k2
⊥ + µ2 exp(ik⊥x⊥)

=
s

2π
K0(µ|x⊥|)

+
sµ

2π
√
s

�⊥x⊥
|x⊥| [x+ϑ(−x+)− x−ϑ(x−)]K1(µ|x⊥|)

− isµ2

4π
√
s
(|x+|+ |x−|)K0(µ|x⊥|). (3.13)

Then the final expression is

iλ2κ4

4

∫
dη


( δΠ[ν]

δν1(η)

)2

+

(
δΠ[ν]
δν2(η)

)2



≈ − iλ2κ4

(2π)8s2
√
s

∫
d4k1d4k2 exp[−ix(k1 + k2)](k1k2)

×
∫ ∞

−∞
dξ1dτ1ei(k(1)

− ξ1−k
(1)
+ τ1)

∫ ∞

−∞
dξ2dτ2ei(k(2)

− ξ2−k
(2)
+ τ2)

× [Φ(ξ1, ξ2) + Φ(τ1, τ2)]

× aµ1 (ξ1)aν1(ξ1)Dµνσ (k1)aσ2 (τ1)a
 
2(τ1)a

ρ
1(ξ2)a

λ
1 (ξ2)

× Dρληω(k2)a
η
2(τ2)aω2 (τ2)[Φ(ξ1, ξ2) + Φ(τ1, τ2)]

=
iλ2κ4s2µ2

8π2
√
s

(|x+|+ |x−|)K2
1 (µ|x⊥|). (3.14)

As in the preceding section we have assumed |x⊥| �= 0,
which ensures that all the integrals converge. We now
substitute (3.13) and (3.14) into (3.12) and obtain for
S

(n=1)tensor
λ the desired expression,

S
(n=1)tensor
λ ≈ exp

[
iκ2sλ

2π
K0(µ|x⊥|)

]
(3.15)

×
{

1 +
iκ2sλµ

2π
√
s

�⊥x⊥
|x⊥|

× [x+ϑ(−x+)− x−ϑ(x−)]K1(µ|x⊥|)
− κ2sλµ2

4π
√
s

(|x+|+ |x−|)K0(µ|x⊥|)

+
iκ4s2λ2µ2

8π2
√
s

(|x+|+ |x−|)K2
1 (µ|x⊥|)

}
.

It is important to note that in contrast to the scalar model
the corresponding correction terms in quantum gravity in-
crease with the energy. Using (3.14) and the phase func-
tion of the leading eikonal behavior following from (3.15),
after integration over dx+, dx− and dλ for the scatter-
ing amplitude in the high-energy limit s � M2

PL � t, we
obtain the following eikonal form:

T (s, t)tensor = −2is
∫

d2x⊥ei∆⊥x⊥(eiχ(|x⊥|s) − 1), (3.16)
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where the eikonal phase function χ(x⊥s) by graviton ex-
change increases with energy as

χ(x⊥s) =
κ2s

2π
K0(µ|7x⊥|), (3.17)

and in the model with vector mesons (Lint = −gϕ�i∂σϕAσ

+ g2AσA
σϕ�ϕ), the eikonal phase function is

χ(x⊥) =
g2

2π
K0(µ|7x⊥). (3.18)

It should be noted that the eikonal phases given by
(2.34), (3.18) and (3.17) correspond to a Yukawa potential
between the interacting nucleons; according to the spin
of the exchange field in the scalar case this potential de-
creases with energy V (s, |x⊥|) = −(g2/8πs)(e−µ|x⊥|/|x⊥|)
and is independent of energy in the vector model V (s,
|x⊥|) = −(g2/4π)(e−µ|x⊥|/|x⊥|). In the case of graviton
exchange the Yukawa potential V (s, |x⊥|) = (κ2s/2π)
(e−µ|x⊥|/|x⊥|) increases with energy. Comparison of these
potentials has made it possible to draw the following con-
clusions: in the model with scalar exchange, the total cross
section σt decreases as 1/s, and only the Born term pre-
dominates in the entire eikonal equation; the vector model
leads to a total cross section σt tending to a constant value
as s→∞, t/s→ 0. In both cases, the eikonal phases are
purely real and consequently the influence of inelastic scat-
tering is disregarded in this approximation, σin = 0. In the
case of graviton exchange the Froissart limit is violated. A
similar result is also obtained in [6] with the eikonal series
for reggeized graviton exchange.

We may mention that in the framework of the quasipo-
tential approach [29–31] in quantum field theory there is a
rigorous justification of the eikonal representation on the
basis of the assumption of a smooth local quasipotential.
In the determination of non-leading terms just considered
we have a singular interaction which, when radiative ef-
fects are ignored, leads to a singular quasipotential of the
Yukawa type which requires special care.

4 Conclusions

In the framework of functional integration using the
straight-line path approximation in quantum gravity we
obtained the first-order correction terms to the leading
eikonal behavior of the Planck energy scattering ampli-
tude. We have also shown that the allowance for these
terms leads to the appearance of retardation effects, which
are absent in the principal asymptotic term. It is impor-
tant to note that the singular character of the correction
terms at short distances may ultimately lead to the ap-
pearance of non-eikonal contributions to the scattering
amplitudes. The straight-line paths approximation used
in this work corresponds to a physical picture in which
colliding high-energy nucleons in the process of interac-
tion receive a small recoil connected with the emission of
“soft” mesons or gravitons and retain their individuality.
The calculation of non-leading terms to leading eikonal

behavior of Planck energy scattering can be realized by
means of the quasipotential method which provides a con-
sistent justification of the eikonal representation of the
scattering amplitude with a smooth local quasipotential.
This problem requires some further study.
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